3.1.76 \(\int \frac {\sqrt {b x+c x^2}}{\sqrt {x}} \, dx\) [76]

Optimal. Leaf size=25 \[ \frac {2 \left (b x+c x^2\right )^{3/2}}{3 c x^{3/2}} \]

[Out]

2/3*(c*x^2+b*x)^(3/2)/c/x^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 25, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.053, Rules used = {662} \begin {gather*} \frac {2 \left (b x+c x^2\right )^{3/2}}{3 c x^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[b*x + c*x^2]/Sqrt[x],x]

[Out]

(2*(b*x + c*x^2)^(3/2))/(3*c*x^(3/2))

Rule 662

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {b x+c x^2}}{\sqrt {x}} \, dx &=\frac {2 \left (b x+c x^2\right )^{3/2}}{3 c x^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 23, normalized size = 0.92 \begin {gather*} \frac {2 (x (b+c x))^{3/2}}{3 c x^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[b*x + c*x^2]/Sqrt[x],x]

[Out]

(2*(x*(b + c*x))^(3/2))/(3*c*x^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.37, size = 23, normalized size = 0.92

method result size
default \(\frac {2 \left (c x +b \right ) \sqrt {x \left (c x +b \right )}}{3 c \sqrt {x}}\) \(23\)
gosper \(\frac {2 \left (c x +b \right ) \sqrt {c \,x^{2}+b x}}{3 c \sqrt {x}}\) \(25\)
risch \(\frac {2 \left (c x +b \right )^{2} \sqrt {x}}{3 \sqrt {x \left (c x +b \right )}\, c}\) \(25\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x)^(1/2)/x^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/3*(c*x+b)*(x*(c*x+b))^(1/2)/c/x^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.31, size = 12, normalized size = 0.48 \begin {gather*} \frac {2 \, {\left (c x + b\right )}^{\frac {3}{2}}}{3 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/x^(1/2),x, algorithm="maxima")

[Out]

2/3*(c*x + b)^(3/2)/c

________________________________________________________________________________________

Fricas [A]
time = 1.67, size = 24, normalized size = 0.96 \begin {gather*} \frac {2 \, \sqrt {c x^{2} + b x} {\left (c x + b\right )}}{3 \, c \sqrt {x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/x^(1/2),x, algorithm="fricas")

[Out]

2/3*sqrt(c*x^2 + b*x)*(c*x + b)/(c*sqrt(x))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {x \left (b + c x\right )}}{\sqrt {x}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x)**(1/2)/x**(1/2),x)

[Out]

Integral(sqrt(x*(b + c*x))/sqrt(x), x)

________________________________________________________________________________________

Giac [A]
time = 0.77, size = 21, normalized size = 0.84 \begin {gather*} \frac {2 \, {\left (c x + b\right )}^{\frac {3}{2}}}{3 \, c} - \frac {2 \, b^{\frac {3}{2}}}{3 \, c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x)^(1/2)/x^(1/2),x, algorithm="giac")

[Out]

2/3*(c*x + b)^(3/2)/c - 2/3*b^(3/2)/c

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {\sqrt {c\,x^2+b\,x}}{\sqrt {x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x + c*x^2)^(1/2)/x^(1/2),x)

[Out]

int((b*x + c*x^2)^(1/2)/x^(1/2), x)

________________________________________________________________________________________